
Efficient Host Intrusion Detection using
Hyperdimensional Computing

Yujin Nam
Dept. of Computer Science and Engineering

UC San Diego
La Jolla, USA

yujinnam@ucsd.edu

Rachel King
Dept. of Computer Sciences

University of Wisconsin-Madison
Madison, USA

rachelking@cs.wisc.edu

Quinn Burke
Dept. of Computer Sciences

University of Wisconsin-Madison
Madison, USA

qkb@cs.wisc.edu

Minxuan Zhou
Computer Science Department
Illinois Institute of Technology

Chicago, USA
mzhou26@iit.edu

Patrick McDaniel
Dept. of Computer Sciences

University of Wisconsin-Madison
Madison, USA

mcdaniel@.cs.wisc.edu

Tajana Rosing
Dept. of Computer Science and Engineering

UC San Diego
La Jolla, USA

tajana@ucsd.edu

Abstract—Modern host-based intrusion detection systems
(HIDS) rely on querying provenance graphs—graph represen-
tations of activity history on a system—to detect and respond to
security threats present on a system. However, as the complexity
and number of applications running on a system increase, the
size of provenance graphs also increase, and thus the latency
to query them. State-of-the-art designs deliver query latencies
that are impractical for modern threat detection. In this paper,
we introduce a hyper-dimensional computing (HDC) approach to
querying provenance graphs for HIDS. By encoding provenance
graphs and attack patterns/signatures into hyper-dimensional
vectors, we can implement a query engine using simple vector
operations. Our approach is hardware accelerator compatible,
providing further speedups under resource-constrained environ-
ments. Our evaluation on a real-world dataset shows that our
approach achieves > 90% detection accuracy and up to 4, 242×
speedups over the state-of-the-art. This shows that HDC-based
approaches can effectively deal with scaling issues in modern
HIDS.

I. INTRODUCTION

Modern host-based intrusion detection systems (HIDS) rely
on collecting and analyzing system-call logs to detect and
respond to security threats present on a system [1], [2]. The
logs are collected by kernel-level agents and used to generate
provenance graphs, concise graph representations of activity
history on the system. For example, provenance graphs capture
what processes spawn other processes, access what files, and
send and receive network traffic. The graphs are then queried
offline to identify behavioral patterns that are consistent with
malicious activity; this practice is commonly referred to as
threat hunting. The behavioral patterns most often reflect the
tactics, techniques, and procedures (TTPs) described in the
industry-standard MITRE ATT&CK framework [3].

However, the increased complexity and number of applica-
tions running on modern computing systems has amplified the
number of system-calls that are made, and thus the volume of
data that must be collected and queried. Increased provenance
graph size inevitably leads to increased query latency, which

can negatively impact the ability of a security analyst to
detect and respond to threats within a reasonable amount of
time [1], [2], [4], [5]. It can also lead to increased power
consumption, and it is important to consider how HIDS
can be efficiently deployed in various contexts, such as on
resource-constrained edge devices. While recent efforts have
made strides towards developing compact, rich representations
of provenance graphs [6], query latencies observed under
these state-of-the-art approaches are still far from practical.
Thus, designing faster methods to query provenance graphs
is paramount to being able to detect threats as quickly as
possible.

In this paper, we introduce an accelerated provenance
graph query engine to detect malicious behavior. We ex-
plore provenance graph querying through the lens of hyper-
dimensional computing (HDC) [7]. Specifically, state-of-the-
art designs rely on high-latency, backward- and forward-
tracing algorithms to match known behavioral patterns (i.e.,
signatures) in provenance graphs. In contrast, we adopt a
probabilistic approach by encoding provenance graphs and
signatures into hyperdimensional vectors. This enables us to
avoid high-latency traversal algorithms and instead perform
queries using simple vector operations. Given the importance
of intrusion detection on resource-constrained devices and that
HDC is hardware-friendly, we also extend our HDC query
engine to a state-of-the-art processing-in-memory accelerator
with optimized data layout and processing flow, demonstrating
significant performance improvements and power savings.

Our approach is comprised of three phases: signature gen-
eration, encoding, and threat detection. We first introduce a
method to extract signatures from provenance graphs based on
known TTPs. We then encode the graphs and signatures into
hypervectors. Finally, we query the graphs to detect the pres-
ence of TTPs. Additionally, we demonstrate the compatibility
of our approach with hardware accelerators to further improve
latency. While using HDC requires balancing the trade-off

between accuracy (i.e., whether the signature is present and
was detected) and latency, our approach still achieves > 90%
accuracy with speedups of up to 4, 242× over state-of-the-
art on CPU and 18, 000× on a hardware accelerator. Our
HDC approach also consumes up to 5, 300× and 12 orders
of magnitude less power with CPU and hardware acceleration
than the baseline.

Our contributions. We contribute the following:
• The first HDC-based solution for querying provenance

graphs for the presence of TTPs.
• Optimized data layout and processing flow of mapping

the hardware-friendly HDC-based provenance graph to a
state-of-the-art processing in-memory accelerator.

• An evaluation of our HDC approach on a real-world
dataset showing that it can deliver sub-millisecond la-
tency with high accuracy and low power consumption.

II. BACKGROUND

A. Threat Hunting with Provenance Graphs
Threat hunting is the practice of proactively searching

through host system logs (i.e., provenance graphs) to detect
and isolate advanced threats that evade existing security solu-
tions such as network firewalls. Threat hunting is recognized as
a graph querying problem [2]. A query is typically structured
as an attack signature (i.e., a subgraph) and posed against
a provenance graph as a binary decision on whether or not
the attack signature is present. Like traditional signatures in
other contexts such as packet matching in network intrusion
detection [8], queries are most commonly generated offline,
but can also be designed and generated on-the-fly based on
domain knowledge and situation-specific observations.

The graphs themselves are typically structured as trees, and
there are two standard methods by which queries are posed
against the graph: backward-tracing and forward-tracing. The
former method begins at each node and traverses upwards until
a node (event) with no parent is found. The latter method
begins at each node and traverses downward until a node
with no child is found. Consequently, backward- and forward-
tracing suffer from the path-explosion problem, where the
number of paths to be searched grows exponentially with the
size of the tree. We focus specifically on backward tracing,
which is the standard method to match attack signatures [2].

Many priors works have explored the use of provenance
graphs for HIDS [5], [9]–[11]. These works have explored
various techniques such as signature matching, machine learn-
ing, and others. In contrast to these works, we focus on
encoding the graphs into vector space in the context of HDC,
such that we can implement an HDC-based query engine to
efficiently perform signature detection rather than compute
anomaly scores. To the best of our knowledge, we are the first
to propose the use of HDC for querying provenance graphs in
HIDS.

B. SysFlow Telemetry Framework
We leverage the state-of-the-art SysFlow telemetry frame-

work to collect system events and generate provenance

graphs [6]. Similar to other widely used frameworks like
Linux Auditd, SysFlow leverages tracepoints in the kernel to
intercept system calls and log various attributes such as the
syscall number, arguments, timestamps, etc. SysFlow prove-
nance graphs contain three high-level node types: process,
file, and network. Each node (of any type) is also classified
in one of three classes: entities, events, and flows. This is
shown in Figure 1. Entities represent nodes where code is
currently being executed, such as virtual machines, containers,
and processes. Entity behaviors are modeled as events and
flows. Events are behaviors that represent a state change in the
entity (e.g., the process is exited or is listening on a TCP port).
Flows are aggregated sets of events that describe a higher-level
behavior (e.g., connect, read, write, and close calls represent
a normal Unix socket lifecycle). SysFlow also provides state-
of-the-art semantic compression techniques that can parse the
syscall logs to produce a compact, rich provenance graph
representation.

C. Hyperdimensional Computing

Hyperdimensional computing (HDC) is a computational
method that shows high efficiency and noise tolerance [12].
HDC encodes input data into a high-dimensional representa-
tion, or hyper vector. Unlike common learning methods, hyper
vectors can serve as a model in HDC, making the model size
small. Hyper vector representation is also holographic, making
the model noise tolerant. HDC is also highly parallel and
suitable for hardware acceleration. Because of the advantages,
HDC has been widely used in applications including classi-
fication, graph prediction, and pattern recognition. Previous
works have shown that it can significantly reduce resource
consumption compared to neural networks and further improve
the latency and efficiency using hardware implementations.

Encoding is a fundamental operation in HDC, where data is
mapped into a high-dimensional vector of size D, known as
hypervectors. The encoding method varies depending on the
input data, to most accurately capture its characteristics. It is
especially emphasized because in HDC, decision making is
done by comparing hyper vectors. For example, in a pattern
matching task, an encoded data would be compared to an
encoded pattern that we are looking for. If the similarity
between the two are close enough, it is decided that the pattern
exists in the input data.

Some of the key operations for HDC tasks are as follows:
• Bundling (+): Element-wise addition between two hyper

vectors. Bundling preserves the information from both
inputs.

• Binding (⊙): Element-wise multiplication between two
hyper vectors. Binding generates new information from
the inputs.

• Similarity (δ(,)): A metric to measure a similarity be-
tween two inputs. Commonly used metrics include Ham-
ming distance, Euclidean distance and cosine similarity.

In this work, we apply HDC for host-based intrusion
detection for the first time leveraging the advantages of
HDC with provenance graph inputs. There are a few prior

type: …

PID: …

type: …

PID: …

type: …

PID: …

type: …

PID: …

type: …

PID: …

type: …

PID: …

collect

h2h1 hD…

Encoder
attack 1 a1,2a1,1 a1,D…

a2,2a2,1 a2,D…attack 2

Detection !
query hypervector alert

provenance graph

Node

Encoder

Path
Encoder

Graph
Encoder

attack hypervectors

Fig. 1: Overview of our methodology.

P

/usr/local/bin/node [app.js]

2025, 0

root 0 root 0 False

'discovery'

P

/bin/sh [-c python cos-write.py -p testat:foo:"ibm 4 life!"]

17726, 0
18044, 1531776736656342367
17733, 1531776712645047111

...

root 0 root 0 False

'mitre:T1059.004', 'mitre:T1106', 'discovery', 'mitre:T1574'

 P

/usr/local/bin/node [app.js]

17753, 1531776715040686177
18044, 1531776736656342367
17733, 1531776712645047111

...

root 0 root 0 False

'discovery'

P

/bin/dash [-c python cos-write.py -p testat:foo:"ibm 4 life!"]

17768, 0
17991, 0

 -1 -1 False

'mitre:T1059.004', 'mitre:T1106', 'discovery', 'mitre:T1574'

P

/bin/sh [-c /tmp/exfil.py -a]

17753, 1531776715040686177

root 0 root 0 False

'mitre:T1059.004', 'mitre:T1106', 'discovery', 'mitre:T1574'

EXEC

EXEC

CLONE

EXIT

EXEC

EXEC

Fig. 2: TTP signatures 1059.004, 1106, and 1574.

works dealing with graph inputs or intrusion detection task.
RelHD [7] proposed an encoding method for graph-like data
to represent the relationship between the nodes. They took both
different data types of nodes and the topology information into
consideration. However, their model objective is to classify an
input node while our objective is to classify an entire input
graph. GraphHD [13] proposed a graph classification based on
HDC, showing their scalability with real-world applications.
However, their encoding focuses on a topology of a graph,
which is not applicable for various applications that takes node
information into consideration. HyperDetect [14] proposed the
first HDC-based solution for network-based intrusion detec-
tion. They also improved the HDC learning method taking
momentum into consideration. However, they did not suggest
an encoding method for provenance graphs and it is nontrivial
to extend to provenance graphs.

III. METHODOLOGY

The goal of our approach is to address the performance
limitations of modern provenance graph querying solutions
for HIDS. However, as the landscape of computing systems
continues to grow, their provenance graphs do as well. With
this, the latency of querying using state-of-the-art solutions
is no longer acceptable. For example, querying SysFlow [6]
provenance graphs generated from a single host across 1-hour
of activity can take upwards of 10 seconds at the tail end.
Querying for the presence of several TTPs can therefore take
several minutes, at which point many attacks may have already
successfully completed.

We consider the use of HDC in provenance graph querying
for HIDS due to its lightweight schemes and high efficiency.
Applying HDC, we encode both TTP patterns and a query
provenance graph. Querying can be done by a simple vector
comparison between the two encodings. This allows a timely
detection of attacks. Furthermore, our approach is hardware
acceleration friendly, as HDC operations consists of highly
parallelizable vector operations. We introduce the details of
the three phases in our methodology: signature generation,
encoding, and threat detection, in the following sections.

A. Signature Generation

The first phase involves generating signatures matching
known TTPs defined in the MITRE ATT&CK framework.
The purpose of the signature is to capture the system-call
pattern exhibited by a particular TTP, and use the pattern as the
query on the provenance graph to detect the presence of the
TTP. We note that this signature is different from traditional
signatures that are used in network intrusion detection systems,
which are based on regular expressions or byte sequences and
do stateless matching. We aim to capture richer, inter-event
relationships by matching paths (and subgraphs in general) in
the provenance graph.

Sysflow does not natively support generating such signa-
tures, but does support simple graph operations and a policy
engine that provides facilities for defining higher-order logic
expressions that are checked against each event. We can
therefore specify the set of conditions that must be satisfied
for a node (or path) in the graph to indicate the presence of a
TTP. For example, to match TTP T1106 (Suspicious process
spawned), a path in the graph must satisfy the following: (1) a
privileged user process must be running, (2) the process must
spawn a child process from an untrusted directory (e.g., /tmp).
An example is shown in Figure 2.

Given this, during construction of the provenance graph,
we can use the policy engine to tag nodes that satisfy the
conditions for a TTP. We can then retrieve a subgraph of the
nodes that are tagged with a specified TTP, and the subgraph
can be used as our attack signature. We note that attacks
may manifest in different ways, and thus a single TTP may
be represented by multiple, different signatures. For example,
an attacker may access several other files before spawning a

suspicious child process. As discussed below, these signatures
are then encoded into hypervectors for detection.

B. HDC Encoding

Given an input provenance graph, our HDC-based approach
encodes graphs and signatures into hypervectors. The encoding
process needs to accurately capture both the nodes’ informa-
tion as well as their relationships within the graph. Our en-
coding approach consists of three stages: node encoding, path
encoding, and graph encoding. First, node encoder captures
each node’s collected syscalls. Then, path encoder integrates
the node encodings to represent the relation between the nodes.
Finally, graph encoder aggregates the path encodings.

1) Node Encoder: Each node holds various information,
including the node type and collected log data. A few of
the key log data includes the executable and its arguments
that created the node. We propose a novel encoding method
that takes these key data into consideration, utilizing bundling
and binding operations between hypervectors. We start by
assigning hypervectors randomly from {−1, 1}D for every
feature value. For instance, node type features can take on one
of three values: process, network, or file. We generate three
hypervectors for type feature values. Similarly, we generate
random hypervectors for executable features. Additionally,
we use binding operations to create feature hypervectors
that are closely associated with other features. For example,
since arguments are related to the executable, we generate an
argument feature hypervector by binding an executable feature
hypervector with a randomly generated hypervector for each
argument. Finally, we encode the node by bundling the feature
hypervectors and applying min-max normalization to ensure
consistency across nodes.

2) Path Encoder: With the generated node hypervectors,
we proceed to encode paths within a graph. We extended the
encoding method introduced in a prior work RelHD’s [7] to
capture the relations between nodes. We adopted the method
to work with an arbitrary length of paths within the graph,
enhancing the capability of our framework to efficiently iden-
tify attack patterns of any length within provenance graphs.
We define a k-hop paths of node n as all routes within the
graph that can be traversed by moving along k edges, starting
at n. For each location of i-th hop, we generate a position
hypervector posHVi randomly. The encoding of the k-hop
paths is then evaluated as the summation of the bindings of
each sum of i-hop node hypervectors and its corresponding
position hypervector, pathHVn =

∑
i Hi

n ⊙ posHVi, where
Hi

n is sum of i-hop node hypervectors of node n. We optimize
this process by reusing the Hi

ns. For example, Hi+1
n can be

evaluated by
∑

j Hi
j , where j includes the i-hop nodes of node

n. Through the reuse of intermediate sums of hypervectors, we
effectively reduce the computation and memory usage.

3) Graph Encoder: Finally, we encode the entire graph us-
ing the path hypervectors by bundling every path hypervector
within the graph. This preserves every path information inside
the graph as a single hypervector, allowing the detection of
path patterns.

…

Vector Adder

…

Vector Adder

…

Compute Cluster

Column
Driver

Row Driver

ADCs
Shift & Add

Interconnect

…

Data Line DriverMatch Line Driver
Sense

Amplifiers

Search Cluster

0

1 2

3

4 5

Fig. 3: FeFET-based PIM architecture for graph-based HDC.

C. Threat Detection

At runtime, syscall logs are collected at a specified time-
scale, the default being 60-second intervals for SysFlow. When
a new set of records is saved to disk, we generate the
provenance graph that is then queried against. In the standard
Sysflow workflow, a query would effectively be performed
by computing a graph intersection with the input provenance
graph collected at runtime and the signature generated offline.
If the intersection is exactly all the nodes in the signature,
we conclude that the malicious events have occurred and have
been detected.

For HDC, the TTP signatures are generated and encoded
into hypervectors offline. At runtime, the input provenance
graph is encoded into a hypervector. We then perform the
query by computing the cosine similarity between the two
hypervectors to evaluate the closeness of the vectors. If the
similarity score is higher than a threshold th, we consider the
threat detected and raise an alert.

IV. HARDWARE ACCELERATION

Prior works have noted the need for high-performance
HIDS in edge-computing environments which are power con-
strained [15], [16]. HDC is also known as a hardware-friendly
algorithm, for which customized accelerators can provide high
performance and power/area efficiency. To demonstrate the ap-
plicability to resource-constrained environments, we therefore
also propose an optimized data layout and processing flow
to fully utilize the benefits of a state-of-the-art processing in-
memory accelerator [7].

A. PIM Architecture

We exploit the FeFET technology, which has shown
supreme efficiency on HDC acceleration, as the foundation of
our PIM accelerator. We adopt the FeFET cluster design from
previous work [7], which contains two types of FeFET blocks
for computing and searching. Each compute cluster attaches
an HD vector adder to a group of FeFET computing blocks to
efficiently handle various HD vector operations (Figure 3).
Specifically, each compute block can sum up hypervectors
stored locally by activating corresponding rows, where each
row can be applied a specific voltage to scale values before
summation. The per-cluster adders handle cross-block vector
accumulation. We adopt the compute cluster to calculate graph
encoding. The search block conducts the max similarity search
between the encoded graph and all encoded attack patterns.

B. Data Layout and Processing Flow

Figure 4 shows the data layout and processing flow of map-
ping HDC-based HIDS onto the PIM accelerator. An example
provenance graph is shown in Figure 4(a). Based on the graph
information, we first allocate a set of compute clusters to store
feature hypervectors (HVs) for node encoding. Specifically,
we allocate separate clusters for different executables, where
each executable has a specific feature HV. Furthermore, we
place HVs of all possible node types in the provenance graph
(i.e., file, network, or process) along with each executable
HV. We also allocate HVs for all possible features (i.e.,
command-line arguments) of a specific executable along with
the corresponding executable HV. Such a layout strategy places
HVs that are able to be bundled in the same memory clusters,
encoding graph nodes with different executables simultane-
ously. However, graph nodes using the same executable can
only be encoded sequentially. We improve the performance
of node encoding by duplicating frequently used executables
under memory constraints.

After generating all node HVs, we iteratively calculate path
HVs for different hops, as shown in Figure 4(b). Unlike the
strategy used in HDC-based graph learning acceleration [7],
which sorts node HVs based on the edge distribution to max-
imize parallelization, HDC-based HIDS can fully utilize the
memory using a straightforward layout because the provenance
graph is essentially a set of trees. Therefore, we can keep a
single instance of each node HVs (hop == 0) or path HV
(hop > 0). To further improve the performance, we allocate
different trees onto different memory blocks, maximizing the
parallelism of in-memory HV bundling. We can alternatively
use the memory for current path HVs and next path HVs when
increasing the hops to save memory consumption. Finally,
we bundle all final path HVs and calculate the maximum
similarity score by comparing to all encoded attack patterns
in FeFET CAM.

V. EVALUATION

To evaluate our system, we compare our results against
the Sysflow baseline query engine, which performs standard
backward-tracing. For the CPU-based evaluation, we used

a server equipped with an Intel Core i7-8700K processor
and 64GB memory. Our experiments seek to answer the
following research questions: (1) What is the latency and
power consumption of an HDC approach? (2) How accurate
is our HDC approach at detecting threats?

A. Experiment Setup

1) Dataset: A known limitation of intrusion detection
systems is the lack of complete public datasets [4]. Many
works, in response, choose to generate their own datasets for
analysis [17]–[21]. However, due to privacy concerns these
datasets are never published publicly, making it difficult to
reproduce and compare results. With this in mind, we evaluate
our system using a set of system traces made public by the
Sysflow project that were collected from various research
events [22]. This dataset includes 10 benign traces and 18
malicious traces with attacks from 15 known MITRE TTPs [3].
As mentioned in section III-A, a single TTP may represent
multiple subgraphs. We generated a signature hypervector by
first encoding every subgraphs and then evaluating an average
of the encodings.

2) Simulation: We use NeuroSim [23] to model a FeFET
memory with 32 clusters, each consisting of 2,048 memory
blocks. Each memory block has 64 rows and 64 columns of
3-bit cells (i.e., 8 levels). We use the latency and energy con-
sumption of various in-memory operations from NeuroSim in
our in-house cycle-based simulation to evaluate the behaviors
of the PIM accelerator.

B. Results

1) Performance Results: In Figure 5, we present a compar-
ison of latency between our method and the baseline. We set
the hop-length for our frame work as 3. Figure 5a shows the
distribution of per-TTP latency. This shows the latency dis-
tribution involved in our graph encoding, detection with both
CPU and PIM experiment and the baseline backward tracing
for a single query of a single TTP. Since our detection is based
on a threshold cosine similarity value, encoding consumes
the majority of latency. Nevertheless, our encoding method is
significantly faster than the baseline, showing speedups from
3 to 64× on CPU and from 2, 400 to 18, 000× with PIM.
Consequently, a security analyst can perform up to 18, 000×
more queries within the same timespan using our method.

An additional advantage of our method is the ability to
encode a data point just once and reuse it for multiple de-
tections. This is because the detection only needs the encoded
hypervector, not the original graph data. Therefore, although
the encoding function is the slower operation in our method,
the latency can be effectively amortized over time as the
hypervector is reused for detecting multiple TTPs. This latency
enhancement was achieved largely through efficient reuse of
node encodings. This is demonstrated in Figure 5b, which
compares the latency of detecting 15 TTPs using our method
against the baseline. Our approach achieves 14 to 4, 242×
speedup on CPU. Additionally, our PIM acceleration shows
4-6 orders of magnitude faster results.

PID: 0
Exe: a

Type: N
Args: 1,3,4

PID: 1
Exe: b

Type: P
Args: 1,2

PID: 1
Exe: b

Type: F
Args: 3,4

Exe-a
Type-N
Type-F
Type-P

Exe-a, Arg 1
Exe-a, Arg 2
Exe-a, Arg 3
Exe-a, Arg 4
Exe-a, Arg ...

Exe-b
Type-N
Type-F
Type-P

Exe-b, Arg 1
Exe-b, Arg 2
Exe-b, Arg 3
Exe-b, Arg 4
Exe-b, Arg ...

Node HV – PID: 0, Type: N Node HV – PID: 1, Type: P

+ +

Node HV – PID: 1, Type: F

+






Node HV – PID: 1, Type: P

Node HV – PID: 1, Type: P

Node HV – PID: 0, Type: N

(b) Node encoding: all HVs are generated/placed offline

(a) Example graph

Hop1 – PID: 1, Type: P

Hop1 – PID: 1, Type: P

Hop1 – PID: 0, Type: N

+

Current Path HVs
(hop-0: just Node HVs)

Next Path HVs
(hop-1)

(c) Path encoding

HopX – PID: 1, Type: P

HopX – PID: 1, Type: P

HopX – PID: 0, Type: N

Final Path HVs
(hop-X)

Attack Pattern HVs
(CAM)

+
Attack 2

Attack 1

Attack 0

Attack ...

(d) Graph encoding and search

Fig. 4: Data layout and processing flow of HIDS on PIM.

10 7 10 6 10 5 10 4 10 3 10 2 10 1 100

Latency (s)

0.00

0.25

0.50

0.75

1.00

EC
DF

Ours-Encoding-CPU
Ours-Detection-CPU
Ours-Encoding-PIM
Ours-Detection-PIM
Baseline

(a) Per-TTP Latency

10 6 10 5 10 4 10 3 10 2 10 1 100

Latency (s)

0.00

0.25

0.50

0.75

1.00
EC

DF

Ours-CPU
Baseline
Ours-PIM

(b) Total Latency

Fig. 5: ECDF of query latency.

10 11 10 9 10 7 10 5 10 3 10 1 101

Energy (J)

0.00

0.25

0.50

0.75

1.00

EC
DF

Ours-CPU
Ours-PIM
Baseline

Fig. 6: ECDF of energy consumption.

Figure 6 illustrates the energy consumption distribution
measured during single query and 15 TTPs detection ex-

periments. Same as the latency result, our results includes
energy consumption during encoding and 15 detections. Our
framework surpasses the baseline in terms of energy efficiency,
whether considering CPU or PIM acceleration. Specifically,
our CPU results show 14 to 5, 300× lower energy consump-
tion. Moreover, our PIM architecture demonstrates remarkable
energy efficiency compared to the CPU baseline, consuming
9-12 orders of magnitude less energy.

2) Accuracy Results: To evaluate accuracy, we compute the
cosine similarity using different hop lengths ranging from 0-
3. The hop length l represents, for each signature, a subgraph
comprised of all paths of length l. For example, a hop length
of 1 would define a signature as a subgraph containing any
two-node paths starting from node n. The larger the hop
count, the more granular the signature becomes (i.e., the
more descendants are included in the signature). We note that
SysFlow already provides semantic compression of high-level
behaviors (e.g., reading or writing to the same file is merged

Hop-Length

TTP 0 1 2 3

T1020 1 1 1 1
T1033 0.952 0.984 1 1
T1059.004 1 1 1 0.979
T1068 0.926 0.916 0.853 0.832
T1069.001 1 0.783 0.957 1
T1072 1 1 1 1
T1082 0.828 0.898 0.891 0.891
T1083 0.955 1 1 1
T1087 1 1 1 1
T1087.001 0.87 0.87 0.87 0.898
T1105 0.926 0.726 0.768 0.758
T1106 0.886 0.757 0.771 0.786
T1222.002 0.952 0.984 0.984 0.937
T1552.003 0.825 0.794 0.81 0.825
T1574 0.886 0.757 0.771 0.786

Average 0.934 0.898 0.912 0.913

TABLE I: ROC-AUC scores for each TTP and hop length.

into a single node).
As a result of this, attack patterns that can be specified with

a smaller subgraph will naturally be able to be detected with
smaller hop counts, and vice versa. This is reflected in our
results in Table I. For example, the signature for T1059.004 is
characterized by a depth of 2, and we observe an accuracy of
100% at a hop count of 2. We note that some TTPs like T1106
are more complex to express (i.e., have a higher depth with
more complex interactions) and certain features have more
significance than others. We are exploring alternative feature
encodings to be able to better detect these.

Overall, our results have an average accuracy > 90% across
all TTPs and hop lengths, demonstrating that HDC-based
querying can provide substantial query latency speedups with
high accuracy.

VI. CONCLUSION

We proposed a novel HDC-based HIDS query engine that
provides the capability to query provenance graphs for the
presence of attack signatures. Our framework first generates
TTP signatures from a dataset of malicious system call traces.
Then, we leverage HDC in the context of HIDS for the first
time, introducing an encoding method to map provenance
graphs and signatures into hyper vectors. We implement and
evaluate our HDC method on a state-of-the-art accelerator to
demonstrate the power cost savings. Our evaluation shows a
detection accuracy of > 90%, and up to a 4, 242× latency
improvement on CPU and up to 18, 000× improvement on
a hardware accelerator. Also, our method consumes up to
5, 300× and 12 orders of magnitude less energy than baseline
with CPU and PIM accelerator, respectively.

ACKNOWLEDGMENT

This work was supported in part by PRISM and CoCoSys,
centers in JUMP 2.0, an SRC program sponsored by DARPA.

REFERENCES

[1] B. Nour, M. Pourzandi, and M. Debbabi, “A survey on threat hunting
in enterprise networks,” IEEE Communications Surveys & Tutorials,
vol. 25, no. 4, pp. 2299–2324, 2023.

[2] X. Shu et al., “Threat intelligence computing,” in Proceedings of the
2018 ACM SIGSAC Conference on Computer and Communications
Security. Toronto, Canada: ACM, 2018, pp. 1883–1898.

[3] MITRE, “Matrix - Enterprise | MITRE ATT&CK®,” 2021. [Online].
Available: https://attack.mitre.org/matrices/enterprise/linux/

[4] M. Zipperle et al., “Provenance-based Intrusion Detection Systems: A
Survey,” ACM Computing Surveys, vol. 55, no. 7, pp. 1–36, Jul. 2023.
[Online]. Available: https://dl.acm.org/doi/10.1145/3539605

[5] M. Liu et al., “Host-based intrusion detection system with system calls:
Review and future trends,” ACM computing surveys (CSUR), vol. 51,
no. 5, pp. 1–36, 2018.

[6] T. Taylor et al., “Towards an Open Format for Scalable System
Telemetry,” in 2020 IEEE International Conference on Big Data (Big
Data). Atlanta, GA: IEEE, Dec. 2020, pp. 1031–1040. [Online].
Available: https://ieeexplore.ieee.org/document/9378294/

[7] J. Kang et al., “Relhd: A graph-based learning on fefet with hyperdi-
mensional computing,” in 2022 IEEE 40th International Conference on
Computer Design (ICCD), IEEE. Lake Tahoe, CA: IEEE, 2022, pp.
553–560.

[8] S. Northcutt and J. Novak, Network intrusion detection. Sams Publish-
ing, 2002.

[9] M. N. Hossain et al., “{SLEUTH}: Real-time attack scenario reconstruc-
tion from {COTS} audit data,” in 26th USENIX Security Symposium.
Vancouver, BC, Canada: USENIX Association, 2017, pp. 487–504.

[10] W. U. Hassan et al., “Tactical provenance analysis for endpoint detection
and response systems,” in 2020 IEEE Symposium on Security and
Privacy (SP), IEEE. San Francisco, CA: IEEE, 2020, pp. 1172–1189.

[11] ——, “This is why we can’t cache nice things: Lightning-fast threat
hunting using suspicion-based hierarchical storage,” in Proceedings of
the 36th Annual Computer Security Applications Conference. Boston,
MA: USENIX Association, 2020, pp. 165–178.

[12] M. Imani et al., “Revisiting hyperdimensional learning for fpga and
low-power architectures,” in 2021 IEEE International Symposium on
High-Performance Computer Architecture (HPCA). Seoul, South Korea:
IEEE, 2021, pp. 221–234.

[13] I. Nunes, M. Heddes, T. Givargis, A. Nicolau, and A. Veidenbaum,
“Graphhd: efficient graph classification using hyperdimensional comput-
ing,” in Proceedings of the 2022 Conference & Exhibition on Design,
Automation & Test in Europe, ser. DATE ’22. Leuven, BEL: European
Design and Automation Association, 2022, p. 1485–1490.

[14] J. Wang, H. Xu, Y. G. Achamyeleh, S. Huang, and M. A. A. Faruque,
“Hyperdetect: A real-time hyperdimensional solution for intrusion de-
tection in iot networks,” IEEE Internet of Things Journal, vol. 11, no. 8,
pp. 14 844–14 856, 2024.

[15] K. Alsubhi, “A Secured Intrusion Detection System for Mobile as
Edge Computing,” Applied Sciences, vol. 14, no. 4, p. 1432, Jan. 2024.
[Online]. Available: https://papers.ssrn.com/abstract=4699806

[16] P. Singh et al., “Edge-Detect: Edge-centric Network Intrusion Detection
using Deep Neural Network,” in 2021 IEEE CCNC. Virtual: IEEE,
Jan. 2021, pp. 1–6. [Online]. Available: http://arxiv.org/abs/2102.01873

[17] W. U. Hassan et al., “NoDoze: Combatting Threat Alert Fatigue with
Automated Provenance Triage,” in NDSS 2019. San Diego, CA: Internet
Society, 2019.

[18] P. Gao et al., “AIQL: Enabling efficient attack investigation from
system monitoring data,” in 2018 USENIX Annual Technical Conference.
Boston, MA: USENIX Association, Jul. 2018, pp. 113–126.

[19] Q. Wang, W. U. Hassan, D. Li, K. Jee, X. Yu, K. Zou, J. Rhee, Z. Chen,
W. Cheng, C. A. Gunter, and H. Chen, “You Are What You Do: Hunting
Stealthy Malware via Data Provenance Analysis,” in Proceedings 2020
Network and Distributed System Security Symposium. San Diego,
CA: Internet Society, 2020. [Online]. Available: https://www.ndss-
symposium.org/wp-content/uploads/2020/02/24167.pdf

[20] X. Han et al., “{SIGL}: Securing software installations through deep
graph learning,” in 30th USENIX Security Symposium. Virtual: USENIX
Association, 2021, pp. 2345–2362.

[21] Y. Xie, D. Feng, Z. Tan, and J. Zhou, “Unifying intrusion detection
and forensic analysis via provenance awareness,” Future Generation
Computer Systems, vol. 61, pp. 26–36, 2016.

[22] IBM, “sysflow-telemetry/sf-lab,” Feb. 2024, original-date: 2022-
11-18T22:14:27Z. [Online]. Available: https://github.com/sysflow-
telemetry/sf-lab

[23] X. Peng et al., “Dnn+neurosim: An end-to-end benchmarking framework
for compute-in-memory accelerators with versatile device technologies,”
in 2019 International Electron Devices Meeting (IEDM). San Francisco,
CA: IEEE, 2019, pp. 32–5.

