
On Scalable Integrity Checking for
Secure Cloud Disks

Quinn Burke, Ryan Sheatsley, Rachel King, Owen Hines, Michael Swift, and Patrick McDaniel
University of Wisconsin-Madison

Abstract
Merkle hash trees are the standard method to protect the in-
tegrity and freshness of stored data. However, hash trees in-
troduce additional compute and I/O costs on the I/O critical
path, and prior efforts have not fully characterized these costs.
In this paper, we quantify performance overheads of storage-
level hash trees in realistic settings. We then design an op-
timized tree structure called Dynamic Merkle Trees (DMTs)
based on an analysis of root causes of overheads. DMTs ex-
ploit patterns in workloads to deliver up to a 2.2× throughput
and latency improvement over the state of the art. Our novel
approach provides a promising new direction to achieve in-
tegrity guarantees in storage efficiently and at scale.

1 Introduction

An increasing number of attacks against cloud services has
fueled significant investment and research into trusted cloud
storage systems: systems that provide high assurance of the
confidentiality and integrity of data stored in-memory and
on-disk through hardware-based access-controls and crypto-
graphic proof systems [3, 15, 48]. To this end, using a Merkle
hash tree [41] has become the state-of-the-art method to pro-
tect the integrity and freshness of both volatile [25, 54] and
persistent [3, 14] storage. An exemplar use case is protecting
disks attached to confidential virtual machines [9, 18, 50].

However, hash trees introduce additional compute (hash-
ing) and I/O (metadata fetching) costs on the I/O critical path,
which can severely degrade performance. For example, con-
sider that a 1 TB disk contains ≈268 M 4 KB blocks. A typical
balanced, binary hash tree over the disk blocks would have
a height of 28, requiring (at least) 28 hashes to be computed
on every read or write. The total cost of fetching metadata
and verifying/updating hashes can exceed several hundred µs,
dwarfing the baseline latency of performing a data access on
a high-performance storage device (which can be < 60 µs).

Prior works have studied this phenomenon, primarily in the
context of secure volatile memory [25, 28, 54, 58]. However,

their performance implications in the context of (cloud) block
storage at large, and low-latency storage devices in particular,
remain largely unknown. The key difference is that storage
devices are subject to vastly different workload characteristics,
capacities, and cache behaviors than memory devices.

In this paper, we take a first-principles approach to ana-
lyzing hash tree performance in the context of cloud block
storage. First, we demonstrate that state-of-the-art hash tree
designs incur significant overheads and fail to reliably scale
to large disk capacities. We then demonstrate that hashing
(CPU) costs are the primary performance bottleneck. Next,
we address the challenge of reducing hashing costs by posing
the fundamental question: How can we model an optimal
hash tree for cloud block storage? We show that the problem
of finding an optimal hash tree can be reduced to the problem
of finding an optimal prefix tree in the context of lossless data
compression [31]. More specifically, by constructing a hash
tree as an optimal prefix code, we can produce a hash tree that
achieves optimal throughput under a known workload profile.

Building on our observations of optimal trees, we then de-
velop an online solution that can approximate an optimal
tree (without a priori knowledge) by learning and adapting
to workload patterns on-the-fly. It is known that real-world
workloads are characterized by skewed access patterns (i.e.,
where a small number of blocks are accessed much more
frequently than others) across all layers of the memory hierar-
chy [3, 19, 37, 57, 59]. In an offline setting, this manifests as
optimal hash trees often being far from balanced—where fre-
quently accessed blocks have shorter verification/update paths
in the tree than infrequently accessed blocks. Towards this,
we introduce a novel dynamic, unbalanced hash tree design
called Dynamic Merkle Trees (DMTs). DMTs are based on
the splay trees commonly used in garbage collection and IP
routing [53], and they self-adjust at runtime to reduce hashing
costs for frequently accessed data.

We implemented DMTs and evaluated them in a real cloud
setting with AWS EC2 instances and NVMe devices. We
performed a broad performance analysis across a range of
system and workload settings, parameterized by disk capacity,

1

Browser

Applications

Client

File system

Mail serverDBMS
Web server

Trust boundary

Cloud Storage
Devices

Block layer

read/write
block

read/write
security metadata

Figure 1: We assume that VM memory contents are trusted
and cloud storage devices are untrusted; VM memory can be
protected with trusted execution primitives [50].

read/write ratio, I/O size, etc. Using a set of Zipfian work-
loads, an Alibaba dataset, and a Filebench OLTP workload,
we show that the static nature of state-of-the-art approaches
becomes prohibitive: they deliver less than <50% of optimal
throughput on average across all experiments. In contrast,
DMTs capitalize on skewed access patterns, delivering >85%
of optimal throughput and up to a 2.2× throughput and la-
tency improvement over the state of the art.

We conclude that for cloud block storage, balanced trees are
ill-suited as the base construction of a hash tree, and DMTs are
a preferable alternative. DMT provide a new foundation in the
search for integrity mechanisms that can operate efficiently at
scale. Our code is plug-and-play into standard Linux systems
and open-sourced at [Anonymized link].

2 Background

Cloud Block Storage. Block storage is a backbone of modern
public cloud infrastructure [6, 8, 17]. While there are various
deployment models for cloud applications and storage, we
consider a standard Infrastructure-as-a-Service (IaaS) deploy-
ment where an application runs inside of a guest VM and
reads and writes to a fast, local NVMe disk attached to the
VM (Figure 1). The application may be end-user facing (e.g.,
a web server) or the last hop in a networked storage system
(e.g., a file server for other cloud-hosted applications).

Merkle Hash Trees. Merkle hash trees are the state-of-the-
art method to protect the integrity and freshness of arbi-
trary datasets—largely due to their proven theoretical effi-
ciency [15, 28, 39, 41, 47]. They have played a pivotal role in
ensuring boot disk integrity with Linux dm-verity [1]—where
they are implemented as a custom device driver that intercepts
I/Os and implements the hash tree logic.

As shown in Figure 2, a Merkle hash tree (or more sim-
ply, a hash tree) is typically a balanced binary tree, with each
node in the tree containing a hash value. A leaf node contains
the hash (MAC) of a data block (and a cipher IV when en-

H0 H1 H2 H3

Security metadata

H0 H1 H2 H3

H4 H5 H6 H7

Proof Authentication pathAccessed block/leaf

H4 H5 H6 H7

Root hash

Data blocks

B0 B1 B2 B3

B4 B5 B6 B7

Leaf nodes

Internal nodes

Figure 2: A Merkle hash tree protects the integrity and fresh-
ness of data read from/written to a storage device.

crypting data), and an internal node contains the hash of the
concatenation of the hashes of its two children. Internal node
hashes are iteratively computed from leaf to root. The root
hash authenticates the current contents of the storage device
and is typically stored in a secure location (e.g., a persistent
on-chip register or a TPM [46, 54]). All other nodes in the
tree are stored on disk alongside the data. The number of leaf
nodes in the tree n is equal to the number of blocks on the
storage device, and the total number of tree nodes is 2n−1.

There are two primitive operations on a hash tree: verifi-
cation and update. When a block is read, it must be verified
against the root hash. The client’s block layer first fetches
the (encrypted) block data, MAC, and cipher IV from disk.
It checks that the retrieved MAC is consistent with the re-
trieved block data by rehashing the data and comparing. It
then fetches the proof of authenticity, a set of sibling hashes
along the path from the accessed leaf to the root (see nodes
highlighted in blue). The retrieved MAC is inserted into the
tree at the appropriate leaf position, and parent hashes are
iteratively computed along the authentication path using the
sibling hashes (see red arrows). The computed root hash is
then compared against the known root hash. If the two hashes
match, verification succeeds. When a block is written, a new
hash must be computed (H0) and the hash tree updated (H0
ancestors). Updates are handled similar to verification, with a
new root hash computed and saved to the secure location.

Caching hashes in secure memory (i.e., in a protected mem-
ory region) is also a standard hash tree optimization [3, 28].
Caching reduces I/O costs associated with fetching hashes
during a verification or update. It also enables early returns
when fetching and verifying hashes; cached hashes were al-
ready authenticated, so any hash that has been tampered with
will result in a failed check at some level in the tree.

2

3 Security Model

Data-only attacks—attacks based on maliciously crafted data
rather than control flow hijacking—have been recently shown
to present a significant threat to modern applications [11, 27,
30, 32, 35]. Any attack that can be launched from (untrusted)
storage would fundamentally upend the security guarantees
provided by the rest of the system. Below we describe these
attacks and outline security requirements to mitigate them.

Trust Model. We assume all VM contents (code and data)
are trusted and the storage devices are untrusted. VM mem-
ory contents can be protected with hardware-based isolation
primitives such as AMD SEV-SNP [50]. The trusted and un-
trusted components therefore have a simple block read/write
interface (Figure 1). This models untrusted disks attached to,
for example, confidential virtual machines [9, 18, 50].

Threat Model. We consider a privileged attacker who has
access to the hypervisor or storage backbone in a public cloud
datacenter [4, 15]. This could be a malicious co-tenant who
was able to escalate privilege, or a malicious cloud administra-
tor. The attacker has the ability to access, corrupt, swap, drop,
record, inject, or replay any data across the storage backbone.

Example attacks. Armed with the capability to inject arbi-
trary data into the storage interface, the attacker could replay
old data to the VM [32, 35]. Data would bubble up the call
stack and either cause the VM to deliver old data to applica-
tions, or cause an outdated version of a binary to be read from
disk and executed [11, 27, 32]. Similarly, consider an ext4
file system formatted on top of the disk. An attacker could
arbitrarily replay inode table blocks and cause the VM OS
to recognize an invalid set of permissions on a file, enabling
unauthorized access to the file. Checksums or keyed hashes
alone cannot prevent these data-only attacks: the received
data would still pass verification.

Security Requirements. Ensuring the safety of user data
and correct execution of applications therefore requires three
security properties for storage: authenticity, uniqueness, and
freshness [5]. Keyed encryption and MACs can ensure confi-
dentiality, authenticity (prevents corruptions), and uniqueness
(prevents relocation attacks). Merkle hash trees then ensure
data freshness [2, 3, 28, 38]: the root hash reflects the current
version of the storage device, so a replay attack would require
changing the root hash, which is stored in a secure location
and is out of control of the attacker 1.

4 Motivation

Though hash trees have played a pivotal role in ensuring boot
disk integrity with Linux dm-verity [1], their performance im-

1To improve performance, some prior works have loosened security re-
quirements by permitting lazy verification [3]. However, this violates fresh-
ness guarantees; we therefore do not consider lazy verification in our analysis.

16MB 1GB 64GB 4TB
Capacity

0
100
200
300
400

M
B/
s

Figure 3: This graph shows how throughput decreases w.r.t.
capacity under an exemplar setup and workload. Experiment
parameters: Workload: Zipf(2.5), Read ratio: 1%, I/O size:
32 KB, Cache size: 10%.

16MB 1GB 64GB 4TB
Capacity

0
100
200
300
400

La
te

nc
y

(µ
s) data I/O update hashes metadata I/O

Figure 4: CPU vs. I/O time during the driver write routine.
Same experiment parameters as above.

plications in the context of (cloud) block storage at large, and
low-latency storage devices in particular, are largely unknown.
In fact, prior works have identified that hash tree overheads
can severely degrade performance for secure memory sys-
tems, and optimizations abound [54]. This raises the natural
question of whether storage-level hash trees observe similar
costs. Our goal in this paper is to quantify this effect and
design optimizations to reduce overheads if so.

Scalability Problem. We begin with a motivating experiment
in Figure 3, which demonstrates the performance of the state-
of-the-art hash tree design used by dm-verity—a balanced,
binary tree. The graph shows how throughput changes as disk
capacity increases. We defer implementation and experiment
setup details to Section 7.1, but note that the hash tree is
implemented in a block device driver that wraps a lower-level
driver, and is exposed as a regular device to file systems or
other applications as /dev/XXX.

The graph shows that throughput decreases w.r.t. capacity.
This is due to the tree size (height) increasing logarithmically
with capacity, which is reflected in logarithmically increasing
slowdowns. At 16 MB capacity, the hash tree incurs nearly a
60% throughput loss over the Encryption/no integrity baseline.
At 4 TB capacity, throughput loss increases to 75%. Note that
the workload shape is immaterial here; the same overheads are
always observed because of the tree structure. Further, note
that read-heavy workloads are generally not an issue, because
the (small) hash cache is very efficient (hit rate >99%), and
verifies benefit from early exits when they hit a cached hash.
The problem is how to efficiently handle writes: under write-
heavy workloads, hash tree overheads are prohibitive at small

3

64B 128B 256B 1KB 2KB 4KB
Data size

0
2
4
6
8

10

La
te

nc
y

(µ
s)

binary
64-ary

Figure 5: This graph shows the latency of computing SHA256
hashes on a modern processor with hardware acceleration for
cryptographic functions. The annotations highlight the input
data size to the hash function at different tree arities.

and large capacities, undermining the performance capability
of the fast NVMe device.

Root Cause Analysis. Figure 4 shows the latency breakdown
during the device driver write routine. As expected, for a
32 KB I/O the time spent pushing data out to disk (data I/O) is
approximately 60 µs. The remaining time in the write routine
is spent fetching/writing hashes to disk (metadata I/O) and
performing hash updates (computing the new block hash and
executing the hash tree update). Metadata I/O is negligible
because the hash cache is very efficient. The majority of time
is therefore attributed to managing the hash tree.

To understand why this occurs, Figure 5 shows the latency
to compute a SHA256 hash (the standard hash function used
in Merkle hash trees) vs. data size on a 2.9GHz Intel Xeon
Platinum 8375C, a 3rd Generation Intel Xeon Scalable pro-
cessor supporting AES and SHA instruction-set extensions to
accelerate cryptographic operations. We observe that it takes
approximately 490 ns to compute the hash of 64 B of data.
We also measure the latency to encrypt and generate the MAC
for a 4 KB block with AES GCM to be approximately 2 µs.

Figure 4 shows that at 1 GB capacity, approximately 150 µs
is spent managing the hash tree. Consider that a 1 GB disk
has 262,144 4 KB blocks and thus a height of 18, requir-
ing one SHA256 computation per level. Further, with 4 KB
disk blocks, executing a 32 KB write I/O would require
32768/4096 = 8 hash tree updates executed sequentially—
best-known methods still rely on a global tree lock to serialize
tree updates. This amounts to 150 µs/8 = 18.75 µs spent en-
crypting data, generating the MAC, and updating the hash
tree. Thus, we have 18.75− 2 = 16.75 µs time spent doing
the actual hash tree update, and 16.75/18 = 0.93 µs total time
spent doing work at each level in the tree. Most of this time
is spent computing the node hash, with the remaining work
being cache lookups and buffer copying.

Note that with even faster devices in the future (with single-
digit microsecond access latencies), the proportion of time
spent hashing vs. doing data I/O will grow substantially.

Optimized Tree Structures. Fundamentally, this means that
time spent hashing (CPU costs) is the bottleneck. Section 7

2 8 32 128
Arity

0

50

100

150

200

Ex
pe

ct
ed

 c
os

t (
µs

)

Figure 6: We calculate the expected hashing costs for a 32 KB
write I/O based on the tree height under different tree arities,
given the measured SHA256 latencies for each arity in Fig-
ure 5. The graph shows that low-degree trees should have
lower hashing costs than high-degree trees.

will show that caching and parallelization only help to an
extent. What is needed is a structurally more efficient tree.

Prior works optimizing hash trees for memory have largely
converged on the idea that high-degree (e.g., 64-ary) trees are
the solution to eliminate overheads [54]. The intuition is that
by increasing tree fanout, one can decrease tree height and
thus the number of hashes that must be computed per read
or write. However, Figure 6 shows that high-degree trees are
actually a suboptimal design choice. We compute the expected
hashing costs based on the hashing latency and the height of
the tree observed under a given arity for 1 GB capacity (e.g.,
64-ary trees have height 3). The graph shows that high-degree
trees incur the highest hashing costs. We will demonstrate
in Section 7 that high-degree trees fail to reliably scale, and
binary trees perform best. We therefore seek a better way to
maneuver binary trees to reduce overheads.

5 Optimal Hash Trees

We approach this problem by asking the fundamental question:
Is there an optimal tree structure? [33]. Having a definition of
an optimal tree serves two purposes: (1) under a specified set
of assumptions, it establishes an upper bound on performance,
and (2) it discloses what characteristics of the tree structure
are correlated with optimal performance.

5.1 Optimal Definition

We previously showed that CPU costs are the bottleneck that
affect device performance. Intuitively, an optimal hash tree
must therefore be a tree that reduces the number of hashes
that must be computed per update or verification, reducing
hashing costs and therein improving performance.

We observe that the problem of finding an optimal hash
tree can be reduced to finding an optimal prefix tree (or prefix
code) in the context of lossless data compression [43]. Prefix
codes map a set of symbols onto a set of codewords, with
the goal of compression being that codewords are as short as

4

0.2

0.4

1.0

0.6

Root hash

Access probabilities
Symbol/Block B0 B1 B2 B3 B4 B5 B6 B7
Probability 0.1 0.1 0.3 0.3 0.05 0.05 0.05 0.05

B2: 0.3 B3: 0.30.2

B0: 0.1 B1: 0.1 0.1

B4: 0.05 B5: 0.05

0.1

B6: 0.05 B7: 0.05

symbols in codeword (cB0 = '000')
hashes computed during update/verification

'0'

'0'

'0'

hash(...)

hash(...)

Figure 7: A Huffman tree is an optimal prefix tree. A hash tree
constructed as a Huffman tree with a given access probability
distribution is an optimal hash tree.

possible to produce a maximally compressed representation of
the original data. An example is shown in Figure 7. Formally:

Theorem 1. A hash tree constructed as an optimal prefix
code is optimal for an i.i.d. access probability distribution.

Proof. Let A = {a1,a2, . . . ,an} be a symbol alphabet and
W = {w1,w2, . . . ,wn} be a set of associated symbol weights.
Let C = {c1,c2, . . . ,cn} be a prefix code that represents the
set of codewords for symbols in A. A prefix code C is said
to be optimal if it minimizes the expected codeword length:
argminC ∑

n
i=1 wi|ci|,ci ∈C. The length of a codeword is the

number of bits in a codeword, or equivalently, the number of
edges in the path from the root to the symbol leaf in the prefix
tree representation of C. Huffman coding is a widely-used
algorithm to produce optimal prefix codes [31].

Now let B = {b1,b2, . . . ,bn} be a set of disk blocks and
F = { f1, f2, . . . , fn} be a set of access frequencies to blocks
determined by some known workload profile. Suppose we
map each block bi to a symbol ai and each access frequency
fi to a symbol weight wi. Running Huffman’s algorithm on A
and W produces a prefix code with expected codeword length
∑

n
i=1 wi|ci| = ∑

n
i=1 fi|bi|.

In the compression domain, the number of edges represents
the number of bits needed to parse a symbol’s codeword,
while in the hash tree domain it represents the number of
hashes that must be computed from leaf to root for a block.
A hash tree constructed as a Huffman code minimizes the
expected number of hashes computed during an update or
verification and is therefore an optimal hash tree.

5.2 Extended Optimal Definition
Now we extend our optimal definition to consider the ef-
fects of cache performance. Note that both data blocks and
hashes can be cached in memory. In the compression domain,
codeword paths in an (optimal) prefix tree can be parsed
in constant work per edge, giving a total amount of work:
∑

n
i=1 wi(|ci| ·O(1)) = O(1) ·∑n

i=1 wi|ci|. However computing
a hash requires (at least) two hash fetches in a binary hash tree:
the node’s two children. If both hashes are present in memory,
fetch costs are negligible and the amount of work is similarly
optimal: ∑

n
i=1 fi(|bi| ·O(1)) = O(1) ·∑n

i=1 fi|bi|. Otherwise if
they must be fetched from disk, I/O costs are non-negligible:
∑

n
i=1 fi(|bi| ·t(bi)) =∑

n
i=1 fi|bi| ·t(bi), for some function t(bi).

We can model the incurred I/O costs using the average
memory access time formula:

AMAT = hit time+miss rate×miss penalty
=⇒ t(bi) = mem latency+miss rate× reauth latency
=⇒ t(bi) = H +mD = O(1)+mD

(1)

where H is a fixed memory access cost, m is the miss rate of
a node fetch in memory, and D is a fixed fetch/reauthentication
cost. Substituting this in, the total amount of work is:

n

∑
i=1

fi|bi| · t(bi) =
n

∑
i=1

fi|bi| · (O(1)+mD)

= O(1) ·
n

∑
i=1

fi|bi|︸ ︷︷ ︸
base work

+mD ·
n

∑
i=1

fi|bi|︸ ︷︷ ︸
I/O costs

.
(2)

Remark. From our model, we see that higher miss rates for
block hashes incur more work per edge, proportional to the
expected number of hashes that must be computed per update
or verification. Specifically, at a given miss rate, the incurred
I/O costs follow the same distribution as the underlying ac-
cess probability distribution: hotter data has a lower expected
amount of base work and incurs lower I/O costs, while colder
data has a higher expected amount and incurs higher I/O costs.

We also see that with an optimal cache (m = 0.0), the ex-
pected total amount of work is exactly optimal. However, it
has been empirically observed that as cache size decreases,
miss rates increase with a power law [16], and thus as the
cache size decreases, expected I/O costs increase with a power
law. This implies that the performance of hash trees is very
sensitive to cache size. In particular, as cache memory can
be financially costly on cloud servers, being able to syner-
gize well with relatively smaller caches (w.r.t. larger disks) is
critical to a practical hash tree deployment.

Moreover, a Huffman tree is optimal under a known and
fixed set of weights (cf. access probability distribution) for
an i.i.d. source. If the symbol sequence (cf. block access
sequence) observed while compressing a message (cf. during

5

a program trace) exactly matches the one used to construct
the tree, then the tree will be exactly optimal (i.e., provide
optimal throughput). However, if the sequence deviates from
the one used to construct the tree, the tree will not be exactly
optimal. Similarly, if the source is not i.i.d., then the tree will
not be exactly optimal—temporal patterns in the workload
may cause the tree to underestimate an upper bound.

5.3 Optimal Tree Oracle
Our optimal definition provides that, if we have knowledge
of a concrete block access sequence (i.e., workload trace),
we can instantiate an optimal hash tree from the trace and
measure a concrete upper bound on performance (i.e., maxi-
mum possible throughput under the given workload). In an
offline setting, where we have access to workload traces (e.g.,
recorded with tools like blktrace or fio), we can feasibly do
so. We refer to this methodology as the optimal tree oracle.

The primary purpose is to measure whether overheads ob-
served by a hash tree design (like dm-verity) are better at-
tributed to the structure of the tree or to a fundamental scaling
limit. For example, a hash tree may be performing optimally,
but have high overheads, which would suggest that compli-
mentary optimizations (e.g., dividing the tree into one or more
independent security domains) may be the only way to break
the performance ceiling. In contrast, a hash tree that does
not perform optimally under a given workload may require a
fundamental redesign.

We liken this approach to Belady’s optimal page replace-
ment algorithm [10], a clairvoyant algorithm that has a priori
knowledge of future memory accesses and can make optimal
page replacement decisions. This gives us the ability to make
rigorously grounded conclusions about what hash tree designs
perform well and when. We defer analysis with the optimal
tree oracle (denoted by H-OPT) to Section 7.

6 Dynamic Merkle Trees

A condition of instantiating an optimal hash tree is that we
must have a priori knowledge of the exact workload. This is
rarely feasible in practice. This section builds on observations
of optimal hash trees to develop a novel hash tree design that
can approximate an optimal tree by learning and adapting to
workload patterns on-the-fly.

6.1 Challenges

Finding a Suitable Tree Structure. State-of-the-art hash
tree designs rely on static, balanced tree structures [1, 54].
Balanced trees are optimal under uniform access patterns.
However, real-world storage workloads most often exhibit
skewed (i.e., non-uniform) access patterns [3, 19, 37, 57, 59]
where a small number of blocks is accessed most of the time.

zipf2.5

0 20 40 60 80 100
% of addr space

0

25

50

75

100

%
 o

f a
cc

es
se

s

97.63% of accesses
to 5.0% of blocks

Entropy: 1.422

Figure 8: In practice, access patterns observed at the storage
layer are most often skewed, and Zipfian workloads are used
to model this shape [37, 59]. This graph shows that a small
number of blocks is accessed most of the time, which suggests
that operations on the hash tree should also be skewed.

The result is that the optimal hash trees produced by Huffman
codes are often far from balanced.

For example, Figure 8 shows the access distribution for a
Zipfian workload; note that most real-world workloads obey
Zipf’s law and are modeled with Zipfian workloads [59]. The
data accesses are highly skewed, which suggests that the op-
erations on the hash tree may also be highly skewed. Figure 9
shows this to be true: in a balanced tree over 8192 blocks (a
32 MB disk), leaf node heights are constant at 13, but in the
optimal tree we see two distinct regions representing hotter
(height ≈ 10) and colder data (height ≈ 30).

Optimal trees tend to accumulate hot data high up in the
tree and place cold data at nearly a 3× height difference—
significantly reducing the verify/update latency for hot data.
This indicates that an optimal tree is one that aggressively op-
timizes for hot data (the working set). Unfortunately, the static
nature of standard hash tree designs precludes exploiting this
skew when present in a workload.

Handling Changing Access Patterns. Yet, workload char-
acteristics can also vary over time: access patterns may still
be skewed but regions of interest may change, or some pe-
riods of time may be characterized by more uniform access
patterns. This is particularly true for storage that is shared by
multiple cooperating applications or users. Thus, a tree that is
optimal at one point in time may not be optimal for another
(i.e., dynamically optimal). An online solution, one that does
not assume a priori knowledge of workload characteristics,
therefore must not only be able to capture hot data by placing
more frequently accessed nodes higher in the tree, but also be
able to dynamically adapt to changes in what particular data
is deemed hot or cold over time.

Adaptive tree structures have been widely studied, partic-
ularly for search. Most algorithms focus on keeping trees
balanced to reduce worst-case running time. We explicitly
aim to remove this constraint; commonly used self-balancing
trees (e.g., AVL trees) are therefore ill-fit for our use case. We

6

5 10 15 20 25 30 35 40
Leaf height

0

500

1000

1500

2000

2500

Fr
eq

ue
nc

y

Figure 9: Skewed patterns manifest in optimal hash trees be-
ing far from balanced: under a Zipfian probability distribution,
there are distinct regions of relatively hotter and colder data.

aim for a more aggressive optimization: allow the tree to be-
come unbalanced as necessary, but be driven by the workload.

Managing Restructuring Costs. While intuitively it makes
sense that unbalanced trees should be able to exploit skewed
patterns by placing more frequently accessed leaf hashes
closer to the root, realizing this is in a real system is a non-
trivial problem. The mechanics of adapting trees involve a
series of rotations. While rotations are cheap for search trees,
consisting of a series of pointer updates, they are expensive
for hash trees, as we have to recompute hashes for all nodes
from the rotation point up to the root. This applies when nodes
are rotated during either verifications or updates.

The costs of rotating nodes in the tree may therefore quickly
outweigh any expected benefits of moving frequent nodes
closer to the root. The cost of a rotation itself is also not
constant, but proportional to the current height of the nodes
involved in the rotation. Further, search trees permit all nodes
to be searchable, but as mentioned, only leaf nodes are search-
able in a hash tree. We therefore must maintain the invariant
that during a rotation, a leaf remains a leaf and an internal
node remains an internal node. Otherwise, a rotation will
result in an invalid tree structure.

6.2 Randomized Splaying

We draw a connection to a data structure widely used in
garbage collection and IP routing: splay trees [53]. Splay
trees are a type of binary search tree that brings an accessed
leaf to the root through a series of rotations. Importantly, splay
trees capture temporal locality by keeping frequently accessed
nodes closer to the root (Figure 10). However, naively used,
the cost of splaying can be extremely expensive, and splaying
too frequently or opportunistically may keep the tree more
balanced than desired. We adapt the conventional splay tree
design to meet the constraints of a hash tree.

Heuristic Parameters. We define three parameters: a splay
window flag w, splay probability p, and splay distance d. The
splay window flag can be toggled on or off to indicate whether

or not the splay window is active (i.e., whether or not we
should consider a tree node to be splayed). This notion is
useful because there may be certain periods at runtime where
splaying should necessarily not occur. This may be the case,
for example, if the system administrator has knowledge of
current application access patterns or profiles them periodi-
cally, or if other background storage tasks may be in progress
that require stability of data (e.g., health checks).

If the splay window is active, the splay probability denotes
the probability that an accessed node should be splayed. The
key intuition is that splaying is an expensive operation, but we
can amortize costs by only splaying on a small percentage of
accesses (e.g., 1% of the time). Finally, if a node is decided to
be splayed, the splay distance defines the maximum number of
levels that the node should be splayed (i.e., promoted) up the
tree. This entire process occurs at the end of each verification
or update call and before anything is returned to the caller.

6.3 Technical Approach

Analyzing Data Hotness. The splay distance is the central
parameter that determines the effectiveness of a splay opera-
tion. Determining a suitable splay distance is challenging, as
there is an inherent risk vs. reward trade-off when splaying a
node. Splaying any node all the way to the root may be very
beneficial if a node is relatively hot, as future accesses to the
data can quickly benefit from the promotion. However, doing
so would be severely wasteful if the node is cold, as the tree
will then require several additional rotations to eventually
promote hotter data and demote the cold data from a higher
position in the tree. Finding an accurate and practical hotness
metric is critical to balancing this trade-off.

We attach an integer hotness counter to each tree node that
is incremented whenever a node is promoted in the tree and
decremented whenever a node is demoted in the tree. This
applies to both leaves (i.e., blocks) and internal nodes (which
indicate the hotness of particular subtrees/blocks). The pur-
pose of the hotness counter is to track the relative access
frequencies of nodes as they are rotated, and use this informa-
tion to determine how far to splay the node up the tree.

The counter is initialized to zero after the node is authenti-
cated and cached; the hotness of nodes that are not currently
cached in memory is therefore not tracked. The purpose of this
is to localize our analysis of data hotness to the working set.
Note that this approach can negatively affect performance for
small caches, as it will be difficult to draw a contrast between
relatively hotter, warmer, and colder data when counters are
reset frequently. Nonetheless, the splay distance is a function
of the hotness. The splay distance is computed in a straight-
forward manner: at a distance proportional to the hotness. For
simplicity, we set the splay distance to be h levels, where h is
the current hotness counter value of the accessed leaf.

Intuitively, nodes that are deeper in the tree (colder) will
climb the tree slowly, while nodes that are higher in the tree

7

p
x

A

B
B0

p

x

A B

B0

zigrotate
right

1

g
p C

zig-zigrotate
right

x

AB0
B

g

p

C

rotate right

x

AB0 B g
p

C

x

A

B0

B

g
p C

zig-zag
rotate
left

x

B B0
A

g

p
C

rotate
right x

B

B0

A

gp

C

x

B B0A

 B0: +1
 level

 Update
 from: p

Update from: g
 Update
 from: p

Update from: g

 B0: +2
 levels

 B0: +1
 level

1

1
2

2

 Update
 from: p

Figure 10: Splay trees are a type of binary search tree that
capture temporal locality by bringing an accessed leaf closer
to the root. We use a splay-based hash tree design to similarly
capture temporal locality in cloud block storage workloads.

(hotter) will climb quickly. Note that our initial exploration
into this space could be expanded with sketching algorithms,
machine learning, or other sophisticated techniques [29].

Promotion & Demotion. After computing the splay distance,
the final step is to execute the splay operation. Splaying a
DMT is done in nearly the same way as it is in a search tree.
There are three cases to consider when splaying a node: zig,
zig-zig, and zig-zag (Figure 10). In a zig case, the node’s
parent is the root, and we rotate the node up to the root. In a
zig-zig case, the node’s parent is not the root, and the node
and the node’s parent are either both left or right children. In
this case, we perform two rotations along the same direction
to rotate the node up two levels. In the zig-zag case, the node’s
parent is not the root, and the node and the node’s parent are
opposite-side children. Thus, we perform two rotations along
opposite directions to rotate the node up two levels.

A consequence of splaying is that an accessed node will
either be promoted two levels (or to the root). Neighboring
nodes will similarly be promoted opportunistically as a side-
effect of the splay. This provides two benefits. Nodes that
are accessed frequently will therefore have an increasingly
shorter path to the root, making verifications and updates
quicker. More subtly, nodes that are accessed in close tempo-
ral proximity will slowly accumulate in nearby regions of the
tree, allowing to exploit spatial locality within the tree.

Maintaining Hash Tree Invariants. We make three key
changes to the standard splay operation to maintain three
tree invariants. First, during a splay, we must ensure that a
leaf node remains a leaf node and an internal node remains
an internal node. Otherwise, a rotation will result in an in-

Parameter Description

Capacity Usable capacity for data blocks
Cache size ratio Cache size as % of tree size
Read ratio % of read operations
I/O size Size of application I/O
I/O depth Max no. outstanding application I/Os
Thread count Number of application threads

Table 1: Experiment parameters.

valid tree structure. For example, if a leaf node is splayed to
the root, the root will become a leaf node, which is invalid.
Whenever a block is read or written, we therefore execute a
splay on the accessed leaf’s parent rather than the leaf.

Next, we propagate the child status (left/right) to the splay
operation, and swap the children of the parent node and the
accessed node where necessary. This preserves the structural
constraint for a valid hash tree while still ensuring the maxi-
mum degree of promotion for the accessed node.

Finally, splaying naturally introduces inconsistency into
the tree, as it alters parent-child relationships. This will cause
any subsequent hash fetches on a cache miss to fail due to
an inconsistent root hash. We must therefore ensure that the
tree remains in a consistent state by preemptively fetching
(and authenticating) all sibling hashes before performing a
rotation, then using them to commit the change immediately
after. That is, parent hashes up to the root are recomputed per
rotation (see "Update from" in Figure 10). While updates can
be costly, splaying can reduce these costs over time.

7 Evaluation

We compare DMT performance against two insecure base-
lines (No encryption/no integrity, Encryption/no integrity),
the state-of-the-art binary trees used by dm-verity [1], and
the optimal tree oracle (H-OPT). We also juxtapose DMTs
against the high-degree trees that have been widely used in
secure memory systems [25, 54]. Finally, as noted previously
(see Figure 6), we also examine DMTs with respect to 4-ary
and 8-ary trees, which have not been considered by prior work.
An overview of our parameters is shown in Table 1.

7.1 Experiment Setup

Implementation. We implement the hash trees in 5 K lines
of C++. We use BDUS to implement custom block device
drivers that wrap lower-level drivers [24]. BDUS has a kernel
module that exposes block layer hooks to userspace. The two
primary functions of interest are read() and write(), which
are invoked by the kernel whenever a block is read from or
written to the block device, respectively. We perform a verify
immediately after a block is read and an update immediately

8

before a block is written to disk. Our basic data unit aligns
with the disk I/O size (4 KB blocks) [12, 14, 34, 45].

Testbed. We perform all experiments using AWS EC2
i4i.8xlarge instances equipped with 32 cores, 256 GB mem-
ory and locally-attached NVMe SSDs for data and metadata.
Note that currently there are no available cloud instance types
which both have local NVMe storage and also support confi-
dential VM technology such as AMD SEV-SNP. We reinitial-
ize hash trees between each experiment, use a standard LRU
cache replacement policy, and we set the splay window flag
w = True and splay probability p = 0.01 for DMTs.

Cryptographic Settings. Like prior works, we ensure de-
terministic authenticated encryption with AES-GCM [5, 54].
We use a 128-bit encryption key for blocks. The MACs pro-
duced during the encryption process are used as the leaves in
the hash tree. For internal nodes, we compute 256-bit hashes
using SHA-256 with a 256-bit key.

Workload Settings. We perform a broad analysis across dif-
ferent system and workload configurations, parameterized by
disk capacity, hash cache size, read/write ratio, I/O size, thread
count, and I/O depth. This enables exhaustively examining
the performance space of DMTs. We also examine different
degrees of workload skewness, from pure uniform to highly
skewed. We focus especially on the Zipfian workload dis-
cussed in Section 4, which closely approximates real-world
block-level access patterns, which are highly skewed (and
write-heavy) [37, 59]; see Figure 18. We also use a recently
published Alibaba dataset recorded from an array of 1000
volumes backing various virtual machines in a public cloud
datacenter [37]. Finally, we demonstrate how driver-level im-
provements translate to application-level improvements with
a case study of the Filebench OLTP workload [56].

Like prior works, we generate workloads with fio [7]; we
record/replay traces for the optimal. Workloads have a 5
minute warmup period and 15 minute benchmark period.

7.2 Results
We focus our analysis on three questions:

1. How well do state-of-the-art hash tree designs perform
across the various system and workload settings that
characterize cloud block storage deployments?

2. To what extent can DMTs improve performance over the
state of the art, and under what conditions?

3. What memory and storage trade-offs do DMTs make?

Scaling with Capacity. We first analyze how disk capacity
(which affects tree size/height) and hash cache size affect
performance. Where appropriate, default parameters include—
Read ratio: 1%, I/O size: 32 KB, Thread count: 1, I/O depth:
32, Capacity: 64 GB, Cache size: 10%. We choose these

16MB 1GB 64GB 4TB
Capacity

0
100
200
300
400

M
B/
s 1.3X 1.6X 1.9X 2.2X

Figure 11: Aggregate throughput with Read ratio at 1%.
DMTs scale better than the state-of-the-art, providing up to
2.2× throughput improvements.

16MB 1GB 64GB 4TB
Capacity

0
5000

10000
15000
20000

La
te

nc
y

(µ
s)

16MB 1GB 64GB 4TB
Capacity

0
5000

10000
15000
20000
25000

La
te

nc
y

(µ
s)

Figure 12: P50 (top) and P99.9 (bottom) write latency. DMTs
show up to 2.2× median and tail latency improvements.

parameters because they showcase the best performing con-
figuration for the baselines. We examine various workload
shapes ranging from uniform to highly skewed Zipfian; we
focus particularly on θ: 2.5 in the following experiments be-
cause it closely approximates the shape of real-world storage
workload patterns [37, 59] (see Figure 18).

Figure 11 shows that aggregate read/write throughput de-
creases w.r.t. capacity for all balanced trees. Note that the
Zipfian workload is emitted from an i.i.d. source and is there-
fore an exact upper bound. We observe that 64-ary trees are
the worst performing: reduced tree height can reduce the ef-
fective number of hashes that must be computed, but results
in lower cache efficiency, which amplifies metadata I/O costs.
The state-of-the-art binary trees incur up to a 75% throughput
loss over the Encryption/no integrity baseline at 4 TB. 4-ary
and 8-ary trees similarly suffer from a 70% throughput loss
at 4 TB. In contrast, DMTs consistently deliver the highest
throughput and >85% of optimal throughput across all capaci-
ties. This clearly demonstrates that DMTs can scale to higher
or lower capacities more efficiently. And as noted in Section 4,
with even faster storage devices, the proportion of time spent
hashing vs. performing the data access will grow substantially,
increasing our observed DMT speedups.

Latency improvements are the same—DMTs splay on 1%
of accesses and those costs are amortized over time because
splaying occurs most frequently on hot data. Figure 12 cor-

9

0.0 1.01 1.5 2.0 2.5 3.0
Zipf θ

0
100
200
300
400

M
B/

s

Figure 13: Aggregate read/write throughput. DMTs perform
best under skewed workloads; under uniform workloads they
observe a 6% cost over binary trees due to exploratory splays.

0.1 1.0 10.0 50.0 100.0
Cache size (%)

0
100
200
300
400

M
B/

s

Figure 14: Aggregate throughput. DMTs maintain the highest
throughputs across both small and large cache sizes.

roborates this: DMT median and tail write latencies are still
significantly lower than the state of the art.

Impact of Workload Skewness. Figure 13 shows how perfor-
mance changes w.r.t. workload skewness. We observe again
that 64-ary trees are the worst performing. DMTs provide up
to 2× speedups over the state of the art binary trees under
heavy skew, but incur a 6% cost under more uniform patterns
due to exploratory splays which yield no benefit. We attribute
this low cost to the fact that DMTs inherit the theoretical
guarantees of splay trees, which provide O(log n) amortized
lookup (i.e., verification or update) time. Thus, DMTs perform
at least as good as balanced (binary) trees on average.

We also observe that 4-ary and 8-ary trees deliver 25%
higher throughput than DMTs under more uniform workloads.
As discussed in Section 4, low-degree trees hit the optimal
points in the design space for balanced trees (reduced tree
height without adverse effects on cache performance); prior
works have not considered this. However, when workloads
become skewed, there is a substantial opportunity cost: 4-ary
and 8-ary trees do not perform better than the optimal binary
tree. This highlights a key observation: increasing tree degree
alone is not sufficient to maximize performance. We believe
that extending the DMT design to 4-ary and 8-ary trees will
yield the most performant and generalized solution.

Impact of Cache Size. The above analysis showed that DMTs
can exploit skewed patterns in workloads when present and
deliver a stable performance guarantee across various capaci-
ties. Now we examine the effects that other system settings
and workload characteristics have on performance. The goal
is to evaluate whether these conclusions about DMTs hold
broadly. We continue with the Zipf(2.5) workload.

Figure 14 shows that DMTs maintain the highest through-
puts across both small and large hash caches. Note that cache

1 5 50 95 99
Read ratio (%)

0
500

1000
1500
2000
2500

M
B/

s

4 32 128 256
I/O size (KB)

0
200
400
600
800

1000

M
B/

s

1 8 64 128
Threads

0
100
200
300
400

M
B/
s

1 8 32 64
I/O depth

0
100
200
300
400

M
B/

s

Figure 15: DMTs show speedups across different read ratios,
I/O sizes, thread counts, and I/O depths.

size is specified as a ratio of the tree size; the absolute cache
size varies with capacity. Further, caches mostly benefit read
I/Os (because they enable early returns), but write I/Os still
must traverse the entire path to the root. In general, we observe
that increasing cache size beyond 0.1% does not yield sig-
nificant performance improvements for any hash tree design;
small caches are already very efficient. Yet, losses observed
by all balanced tree designs are still significant. This shows
that caching only helps to an extent—when caches are ef-
ficient, hash tree overheads are largely attributable to how
efficient the tree structure is. However, DMTs still deliver
near-optimal performance and the highest across all sizes.

Impact of Read Ratio, I/O Size, Thread Count, and I/O
Depth. Figure 15 (top) shows how the performance changes
with respect to the read ratio. We expect that at higher read ra-
tios, DMTs, balanced, and optimal trees will all observe higher
absolute throughputs, as reads can be quickly served by early
returns due to caching. However, when there is a significant
proportion of writes (≤ 50% read ratio), DMTs provide nearly
2× higher throughput than balanced trees. Since storage ac-
cess patterns tend to be write-heavy (due to application-level
caches and the OS page cache), this shows that DMTs can
more reliably handle write-heavy workloads, while delivering
comparable performance under read-heavy workloads.

10

0 20 40 60 80 100 120 140
Time (s)

50
100
150
200

M
B/

s
VAULT [54]
dm-verity [1]

DMT
4-ary

8-ary

Figure 16: DMTs can adapt quickly to changing workloads,
exploiting skewed patterns when present.

4TB
Capacity

0
100
200
300
400

M
B/
s

1.3X

20 40 60 80 100 120 140
Throughput (MB/s)

0.00
0.25
0.50
0.75
1.00

EC
DF

VAULT [54]
dm-verity [1]

H-OPT
DMT

4-ary
8-ary

Figure 17: On an Alibaba cloud volume trace, DMTs deliver
notable speedups, while high-degree trees perform worst.

The remaining graphs in Figure 15 reflect the above obser-
vations. Baseline throughputs increase w.r.t. I/O size, but hash
tree performance saturates at 32 KB I/Os—larger I/O sizes
only lead to increased latencies without improved throughputs.
A single thread is sufficient to saturate the device bandwidth.
And an application I/O depth of 32 is sufficient to saturate
the device bandwidth. DMTs still deliver up to 2× and 4×
higher throughput over the state of the art binary and 64-ary
trees. The extent to which DMTs see speedups is thus best
attributed to the workload shape (Figure 13).

As noted in Section 4, 32 KB write I/Os require 8 sequen-
tial hash tree updates. State of the art works are not truly
concurrent, but still rely on a global tree lock to serialize tree
updates [25, 26, 54]. Performance has been shown to improve
under high concurrency by using lazy verification (deferring
and batching updates) [3], but lazy verification violates fresh-
ness guarantees. Designing concurrency-optimal hash trees
(and search trees in general [51]) is an open problem.

Handling Changing Access Patterns. We now demonstrate
that DMTs self-adapting nature is robust to changing work-
load patterns. Figure 16 shows a 150-second snapshot of sam-
pled throughputs under a workload that exercises an extreme
case where patterns alternate between uniform and skewed:
Zipf(2.5) > Uniform > Zipf(2.0) > Uniform > Zipf(3.0).
Phases are 30 seconds long, and the Zipfian phases are ran-
domly centered at a new region in the address space. We
observe that DMT throughput spikes within a few seconds of
entering the Zipfian phases and DMTs maintain the speedup
throughout. This shows that DMTs can capitalize on skewed
patterns very quickly to maximize performance while de-
livering performance comparable to binary trees otherwise.

DMT dm-verity No enc/no integrity

write 255.4 MB/s 151.9 MB/s 318.8 MB/s
read 0.7 MB/s 0.4 MB/s 1.0 MB/s

Table 2: Application read/write throughputs for the Filebench
OLTP workload. DMT driver-level improvements are re-
flected at application-level.

As noted, extending DMTs to 4-ary trees can help further
improve DMT performance during uniform phases.

Case study: Alibaba Cloud Volumes. We showed that DMTs
perform near-optimally under a broad range of system and
workload settings. We now examine how these observations
hold under a real workload sampled from a recently published
Alibaba trace dataset [37] (logical volume ID 4). We scale the
offsets and I/O sizes proportionally to the experiment capac-
ity. Note that the remaining volume traces are qualitatively
the same (mean write ratio >98% and highly skewed). Fur-
ther, note that the workload is non-i.i.d. and therefore H-OPT
can underestimate the upper bound on throughput; temporal
patterns enable DMTs to perform better in some cases.

Figure 17 (left) shows the aggregate throughputs observed
at a 4 TB capacity, and Figure 17 (right) shows the distribution
of write throughputs (sampled at 1-second intervals). Binary
trees observe a 75% throughput loss at 4 TB capacity, while
64-ary trees observe an 88% throughput loss. DMTs provide a
1.3× speedup over the binary trees and a 1.2× speedup over
the 4-ary trees. Importantly, the optimal (binary) tree still
observes 15% higher throughput than 4-ary and 8-ary trees.
This further supports our claim that a balanced tree structure
is not sufficient to maximize the performance potential. As
noted above, we believe the extending DMT principles to a
4-ary tree can help achieve maximum performance.

Case study: OLTP Workload. We now consider the
Filebench OLTP workload, an exemplar application that is
commonly run in the cloud and requires robust security protec-
tions [22]. The goal is to evaluate how DMT device-level im-
provements translate to application-level improvements. The
workload consists of 10 writer threads and 200 reader threads
and is write-heavy. We run the workload for 10 minutes on a
1 TB disk (with a dataset size of ≈922 GB) formatted with
ext4 and using a hash cache size of 10%. Table 2 shows that
DMTs have 1.8× improved read and 1.7× improved write
performance over the state of the art. We are currently ex-
panding our application analysis to other workloads.

Memory & Storage Overhead. DMTs provide several advan-
tages, but have higher memory and storage requirements than
balanced trees (Table 3). DMTs cannot use implicit index-
ing like balanced trees, but instead require explicitly storing
parent-child pointers (as integer node IDs) both for nodes
in-memory and on-disk. This implies at least one additional

11

Memory Overhead Storage Overhead

leaf nodes 0.44× 0.29×
internal nodes 0.80× 0.75×

Table 3: DMTs require additional memory/storage for tree
nodes, but break even on this trade-off: they provide higher
performance than balanced trees, at a smaller cache budget.

integer field for leaf nodes, at most three additional integer
fields for internal nodes, and one additional integer hotness
counter field for all nodes. However, we showed that cache
hit rates are very high even for very small caches. For ex-
ample, DMTs provide better performance at a cache size of
0.1% than binary trees do at a cache size of 1%. Thus, DMTs
deliver better performance per dollar spent on cache memory.

Key takeaways: State-of-the-art hash trees incur sub-
stantial performance loss (up to 80%). DMTs improve
on this by exploiting skewed workload patterns when
present and adapting quickly to changes over time.
We conclude that balanced hash trees are ill-suited
as the base construction of a hash tree: maximizing
performance requires tailoring the tree structure to
the workload pattern.

8 Related Work

Hash trees are a core component of many computing systems,
including blockchains, secure memories, etc. [1,3,5,13,23,25,
28, 36, 39, 44, 52, 54]. We discuss these related works below.

Secure Memory. Secure memories have been long-
studied [25, 28, 49, 58]. Their goal is to provide a secure
environment in which the secrecy and integrity of application
code and data can be assured. Recently, secure memories
have seen widespread commercial success through implemen-
tations such as Intel SGX [15, 39, 47]. Consequently, recent
work has shown that hash trees can severely degrade mem-
ory performance, and optimizing them has been a central
focus of recent research. State-of-the-art approaches, such
as Penglai [25], FastVer [3], and VAULT [54], have shown
that optimizations like caching and increasing tree degree can
lower overheads in some contexts (e.g., at small capacities).

However, we focus on persistent storage rather than main
memory. Hash tree performance implications in the context of
cloud block storage remain largely unknown, perhaps due to
the presumption that hashing costs are negligible at the block
layer. We showed that this is not the case. Further, storage sys-
tems are subject to vastly different workload characteristics,
capacities, and cache behaviors than memory systems. We
juxtaposed DMTs against the high-degree trees used for se-
cure memories [26, 54]) and showed that such approaches are

0 20 40 60 80 100
% of addr space

0

25

50

75

100

%
 o

f a
cc

es
se

s

zipf:0.0
zipf:1.01
zipf:1.5
zipf:2.0

zipf:2.5
zipf:3.0
alibaba_4

Figure 18: Workload distributions.

not applicable to storage. Additionally, some prior works have
decidedly side-stepped the issue of writes by either suppress-
ing caches during updates or limiting analysis to read-heavy
or read-only workloads [3, 52]. Given that storage workloads
are write-heavy, we closely examine write-heavy workloads.
Further, experiments in these prior works have been limited
to small capacities (e.g., 16GB) and therefore have not suffi-
ciently examined the performance space. We report experi-
ments with an implementation on real block devices on a live
Linux system and evaluate a wider range of system settings.

Authenticated Data Structures. Hash trees have also been
examined in the broader theoretical context of authenticated
data structures—data structures that have strong integrity pro-
tections [20, 42, 55]. They become a central component of
mobile and embedded device storage: dm-verity has played
a pivotal role in providing verified boot for Android smart-
phones [1]. They have also been examined in the context
of blockchains [13], certificate revocation systems [40], and
provable data possession schemes [21, 23]. These works have
highlighted the theoretical efficiency of using hash trees over
other integrity data structures. Our work builds on these ef-
forts by showing that, while efficient in theory, traditional
static, balanced hash trees still incur substantial overheads in
real systems. This motivates our search for a more efficient
tree structure and ultimately the design of DMTs.

9 Conclusion

Merkle hash trees provide robust integrity protections over
untrusted storage, but they can severely degrade performance.
We performed a comprehensive analysis of performance over-
heads, demonstrated the root cause, and designed an opti-
mized tree structure called DMTs that offers substantial im-
provements over the state of the art. By re-characterizing in-
tegrity from a static problem into a dynamic one, we showed
the viability of integrity structures that learn and exploit
workload patterns to improve performance. Our code is plug-
and-play into standard Linux systems and is open-sourced at
[Anonymized link].

12

References

[1] Android. Implementing dm-verity. https:
//source.android.com/docs/security/
features/verifiedboot/dm-verity, 2023. Last
accessed: 2023-10-16.

[2] Sebastian Angel, Aditya Basu, Weidong Cui, Trent
Jaeger, Stella Lau, Srinath Setty, and Sudheesh Singana-
malla. Nimble: Rollback protection for confidential
cloud services. In 17th USENIX Symposium on Oper-
ating Systems Design and Implementation (OSDI 23),
pages 193–208, 2023.

[3] Arvind Arasu, Badrish Chandramouli, Johannes Gehrke,
Esha Ghosh, Donald Kossmann, Jonathan Protzenko,
Ravi Ramamurthy, Tahina Ramananandro, Aseem Ras-
togi, Srinath Setty, et al. Fastver: Making data integrity
a commodity. In Proceedings of the 2021 International
Conference on Management of Data, pages 89–101,
2021.

[4] Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas
Knauth, Andre Martin, Christian Priebe, Joshua Lind,
Divya Muthukumaran, Dan O’Keeffe, Mark L. Stillwell,
David Goltzsche, Dave Eyers, Rüdiger Kapitza, Peter
Pietzuch, and Christof Fetzer. SCONE: Secure linux
containers with intel SGX. In 12th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI 16), pages 689–703, Savannah, GA, November
2016. USENIX Association.

[5] Roberto Avanzi, Ionut Mihalcea, David Schall, Héctor
Montaner, and Andreas Sandberg. Cryptographic pro-
tection of random access memory: How inconspicuous
can hardening against the most powerful adversaries be?
Cryptology ePrint Archive, 2022.

[6] Amazon AWS. Amazon elastic block store. https:
//aws.amazon.com/ebs, 2023. Last accessed: 2023-
05-16.

[7] Jens Axboe. fio - flexible i/o tester. https://fio.
readthedocs.io/en/latest/, 2024. Accessed: 2024-
09-12.

[8] Microsoft Azure. Microsoft azure managed disks.
https://learn.microsoft.com/en-us/azure/
virtual-machines/managed-disks-overview,
2023. Last accessed: 2023-05-16.

[9] Microsoft Azure. Confidential vms
overview. https://learn.microsoft.com/
en-us/azure/confidential-computing/
confidential-vm-overview, 2024. Accessed:
2024-08-19.

[10] Laszlo A. Belady. A study of replacement algorithms
for a virtual-storage computer. IBM Systems journal,
5(2):78–101, 1966.

[11] Felix Bohling, Tobias Mueller, Michael Eckel, and Jens
Lindemann. Subverting linux’integrity measurement ar-
chitecture. In Proceedings of the 15th International Con-
ference on Availability, Reliability and Security, pages
1–10, 2020.

[12] Milan Brož, Mikuláš Patočka, and Vashek Matyáš. Prac-
tical cryptographic data integrity protection with full
disk encryption. In ICT Systems Security and Pri-
vacy Protection: 33rd IFIP TC 11 International Confer-
ence, SEC 2018, Held at the 24th IFIP World Computer
Congress, WCC 2018, Poznan, Poland, September 18-20,
2018, Proceedings 33, pages 79–93. Springer, 2018.

[13] Vitalik Buterin. Ethereum: platform review. Oppor-
tunities and Challenges for Private and Consortium
Blockchains, 45, 2016.

[14] Anrin Chakraborti, Bhushan Jain, Jan Kasiak, Tao
Zhang, Donald Porter, and Radu Sion. Dm-x: protect-
ing volume-level integrity for cloud volumes and local
block devices. In Proceedings of the 8th Asia-Pacific
Workshop on Systems, pages 1–7, 2017.

[15] Chia che Tsai, Donald E. Porter, and Mona Vij.
Graphene-SGX: A practical library OS for unmodified
applications on SGX. In 2017 USENIX Annual Tech-
nical Conference (USENIX ATC 17), pages 645–658,
Santa Clara, CA, July 2017. USENIX Association.

[16] CK Chow. On optimization of storage hierarchies. IBM
Journal of Research and Development, 18(3):194–203,
1974.

[17] Google Cloud. Google cloud persistent disks. https:
//cloud.google.com/persistent-disk, 2023. Last
accessed: 2023-05-16.

[18] Google Cloud. Confidential vms
overview. https://cloud.google.com/
confidential-computing/confidential-vm/
docs/confidential-vm-overview, 2024. Accessed:
2024-08-19.

[19] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu
Ramakrishnan, and Russell Sears. Benchmarking cloud
serving systems with ycsb. In Proceedings of the 1st
ACM symposium on Cloud computing, pages 143–154,
2010.

[20] Scott A Crosby and Dan S Wallach. Authenticated dic-
tionaries: Real-world costs and trade-offs. ACM Trans-
actions on Information and System Security (TISSEC),
14(2):1–30, 2011.

13

https://source.android.com/docs/security/features/verifiedboot/dm-verity
https://source.android.com/docs/security/features/verifiedboot/dm-verity
https://source.android.com/docs/security/features/verifiedboot/dm-verity
https://aws.amazon.com/ebs
https://aws.amazon.com/ebs
https://fio.readthedocs.io/en/latest/
https://fio.readthedocs.io/en/latest/
https://learn.microsoft.com/en-us/azure/virtual-machines/managed-disks-overview
https://learn.microsoft.com/en-us/azure/virtual-machines/managed-disks-overview
https://learn.microsoft.com/en-us/azure/confidential-computing/confidential-vm-overview
https://learn.microsoft.com/en-us/azure/confidential-computing/confidential-vm-overview
https://learn.microsoft.com/en-us/azure/confidential-computing/confidential-vm-overview
https://cloud.google.com/persistent-disk
https://cloud.google.com/persistent-disk
https://cloud.google.com/confidential-computing/confidential-vm/docs/confidential-vm-overview
https://cloud.google.com/confidential-computing/confidential-vm/docs/confidential-vm-overview
https://cloud.google.com/confidential-computing/confidential-vm/docs/confidential-vm-overview

[21] Rasmus Dahlberg, Tobias Pulls, and Roel Peeters. Ef-
ficient sparse merkle trees: Caching strategies and se-
cure (non-) membership proofs. In Secure IT Systems:
21st Nordic Conference, NordSec 2016, Oulu, Finland,
November 2-4, 2016. Proceedings 21, pages 199–215.
Springer, 2016.

[22] Haowen Dong, Chao Zhang, Guoliang Li, and Huanchen
Zhang. Cloud-native databases: A survey. IEEE Trans-
actions on Knowledge and Data Engineering, 2024.

[23] C Chris Erway, Alptekin Küpçü, Charalampos Papa-
manthou, and Roberto Tamassia. Dynamic provable
data possession. ACM Transactions on Information and
System Security (TISSEC), 17(4):1–29, 2015.

[24] Alberto Faria, Ricardo Macedo, José Pereira, and João
Paulo. BDUS: implementing block devices in user space.
In Proceedings of the 14th ACM International Confer-
ence on Systems and Storage, pages 1–11, Haifa Israel,
June 2021. ACM.

[25] Erhu Feng, Xu Lu, Dong Du, Bicheng Yang, Xueqiang
Jiang, Yubin Xia, Binyu Zang, and Haibo Chen. Scalable
memory protection in the {PENGLAI} enclave. In 15th
{USENIX} Symposium on Operating Systems Design
and Implementation ({OSDI} 21), pages 275–294, 2021.

[26] Alexander Freij, Huiyang Zhou, and Yan Solihin. Bonsai
merkle forests: Efficiently achieving crash consistency
in secure persistent memory. In MICRO-54: 54th Annual
IEEE/ACM International Symposium on Microarchitec-
ture, pages 1227–1240, 2021.

[27] Anna Galanou, Khushboo Bindlish, Luca Preibsch,
Yvonne-Anne Pignolet, Christof Fetzer, and Rüdiger
Kapitza. Trustworthy confidential virtual machines for
the masses. In Proceedings of the 24th International
Middleware Conference, pages 316–328, 2023.

[28] Blaise Gassend, G Edward Suh, Dwaine Clarke, Marten
Van Dijk, and Srinivas Devadas. Caches and hash trees
for efficient memory integrity verification. In The Ninth
International Symposium on High-Performance Com-
puter Architecture, 2003. HPCA-9 2003. Proceedings.,
pages 295–306. IEEE, 2003.

[29] Milad Hashemi, Kevin Swersky, Jamie Smith, Grant
Ayers, Heiner Litz, Jichuan Chang, Christos Kozyrakis,
and Parthasarathy Ranganathan. Learning memory ac-
cess patterns. In International Conference on Machine
Learning, pages 1919–1928. PMLR, 2018.

[30] Hong Hu, Shweta Shinde, Sendroiu Adrian,
Zheng Leong Chua, Prateek Saxena, and Zhenkai Liang.
Data-oriented programming: On the expressiveness of
non-control data attacks. In 2016 IEEE Symposium on
Security and Privacy (SP), pages 969–986. IEEE, 2016.

[31] David A Huffman. A method for the construction of
minimum-redundancy codes. Proceedings of the IRE,
40(9):1098–1101, 1952.

[32] Brian Johannesmeyer, Asia Slowinska, Herbert Bos, and
Cristiano Giuffrida. Practical {Data-Only} attack gen-
eration. In 33rd USENIX Security Symposium (USENIX
Security 24), pages 1401–1418, 2024.

[33] Kimberly Keeton, Terence Kelly, Arif Merchant, Cipri-
ano A Santos, Janet L Wiener, Xiaoyun Zhu, and Dirk
Beyer. Don’t settle for less than the best: Use optimiza-
tion to make decisions. In HotOS, 2007.

[34] Louiza Khati, Nicky Mouha, and Damien Vergnaud. Full
disk encryption: bridging theory and practice. In Top-
ics in Cryptology–CT-RSA 2017: The Cryptographers’
Track at the RSA Conference 2017, San Francisco, CA,
USA, February 14–17, 2017, Proceedings, pages 241–
257. Springer, 2017.

[35] Anil Kurmus, Nikolas Ioannou, Matthias Neugschwandt-
ner, Nikolaos Papandreou, and Thomas Parnell. From
random block corruption to privilege escalation: A
filesystem attack vector for rowhammer-like attacks.
In 11th USENIX Workshop on Offensive Technologies
(WOOT 17), 2017.

[36] Feifei Li, Marios Hadjieleftheriou, George Kollios, and
Leonid Reyzin. Dynamic authenticated index structures
for outsourced databases. In Proceedings of the 2006
ACM SIGMOD international conference on Manage-
ment of data, pages 121–132, 2006.

[37] Jinhong Li, Qiuping Wang, Patrick PC Lee, and Chao
Shi. An in-depth comparative analysis of cloud block
storage workloads: Findings and implications. ACM
Transactions on Storage, 19(2):1–32, 2023.

[38] Sinisa Matetic, Mansoor Ahmed, Kari Kostiainen, Ar-
itra Dhar, David Sommer, Arthur Gervais, Ari Juels,
and Srdjan Capkun. {ROTE}: Rollback protection for
trusted execution. In 26th USENIX Security Symposium
(USENIX Security 17), pages 1289–1306, 2017.

[39] Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Car-
los V. Rozas, Hisham Shafi, Vedvyas Shanbhogue, and
Uday R. Savagaonkar. Innovative instructions and soft-
ware model for isolated execution. In Proceedings of
the 2nd International Workshop on Hardware and Archi-
tectural Support for Security and Privacy - HASP ’13,
Tel-Aviv, Israel, 2013. ACM Press.

[40] Marcela S Melara, Aaron Blankstein, Joseph Bon-
neau, Edward W Felten, and Michael J Freedman.
{CONIKS}: Bringing key transparency to end users.
In 24th USENIX Security Symposium (USENIX Security
15), pages 383–398, 2015.

14

[41] Ralph C Merkle. A certified digital signature. In Con-
ference on the Theory and Application of Cryptology,
pages 218–238. Springer, 1989.

[42] Andrew Miller, Michael Hicks, Jonathan Katz, and
Elaine Shi. Authenticated data structures, generically.
ACM SIGPLAN Notices, 49(1):411–423, 2014.

[43] Alistair Moffat. Huffman coding. ACM Computing
Surveys (CSUR), 52(4):1–35, 2019.

[44] Moni Naor and Kobbi Nissim. Certificate revocation
and certificate update. IEEE Journal on selected areas
in communications, 18(4):561–570, 2000.

[45] NIST. Report on the block cipher modes of operation in
the nist sp 800-38 series, 2023.

[46] Ronald Perez, Reiner Sailer, Leendert van Doorn, et al.
vtpm: virtualizing the trusted platform module. In Proc.
15th Conf. on USENIX Security Symposium, pages 305–
320, 2006.

[47] Christian Priebe, Divya Muthukumaran, Joshua Lind,
Huanzhou Zhu, Shujie Cui, Vasily A. Sartakov, and Peter
Pietzuch. SGX-LKL: Securing the Host OS Interface
for Trusted Execution. arXiv:1908.11143 [cs], January
2020.

[48] Christian Priebe, Kapil Vaswani, and Manuel Costa. En-
claveDB: A Secure Database Using SGX. In 2018 IEEE
Symposium on Security and Privacy (SP), pages 264–
278, San Francisco, CA, May 2018. IEEE.

[49] Brian Rogers, Siddhartha Chhabra, Milos Prvulovic, and
Yan Solihin. Using address independent seed encryption
and bonsai merkle trees to make secure processors os-
and performance-friendly. In 40th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO
2007), pages 183–196. IEEE, 2007.

[50] Amazon Web Services. Amd sev-snp in ama-
zon ec2. https://docs.aws.amazon.com/AWSEC2/
latest/UserGuide/sev-snp.html, 2024. Accessed:
2024-08-19.

[51] Tomer Shanny and Adam Morrison. Occualizer: Opti-
mistic concurrent search trees from sequential code. In
16th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 22), pages 321–337, 2022.

[52] Rohit Sinha and Mihai Christodorescu. Veritasdb: High
throughput key-value store with integrity. Cryptology
ePrint Archive, 2018.

[53] Daniel Dominic Sleator and Robert Endre Tarjan. Self-
adjusting binary search trees. Journal of the ACM
(JACM), 32(3):652–686, 1985.

[54] Meysam Taassori, Ali Shafiee, and Rajeev Balasubra-
monian. Vault: Reducing paging overheads in sgx with
efficient integrity verification structures. In Proceed-
ings of the Twenty-Third International Conference on
Architectural Support for Programming Languages and
Operating Systems, pages 665–678, 2018.

[55] Roberto Tamassia. Authenticated data structures. In
Algorithms-ESA 2003: 11th Annual European Sympo-
sium, Budapest, Hungary, September 16-19, 2003. Pro-
ceedings 11, pages 2–5. Springer, 2003.

[56] Vasily Tarasov, Erez Zadok, and Spencer Shepler.
Filebench: A flexible framework for file system bench-
marking. login Usenix Mag., 41, 2016.

[57] Weijie Wang, Yujie Lu, Charalampos Papamanthou, and
Fan Zhang. The locality of memory checking. Cryptol-
ogy ePrint Archive, 2023.

[58] Chenyu Yan, Daniel Englender, Milos Prvulovic, Brian
Rogers, and Yan Solihin. Improving cost, performance,
and security of memory encryption and authentica-
tion. ACM SIGARCH Computer Architecture News,
34(2):179–190, 2006.

[59] Yue Yang and Jianwen Zhu. Write skew and zipf distri-
bution: Evidence and implications. ACM transactions
on Storage (TOS), 12(4):1–19, 2016.

15

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/sev-snp.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/sev-snp.html

	Introduction
	Background
	Security Model
	Motivation
	Optimal Hash Trees
	Optimal Definition
	Extended Optimal Definition
	Optimal Tree Oracle

	Dynamic Merkle Trees
	Challenges
	Randomized Splaying
	Technical Approach

	Evaluation
	Experiment Setup
	Results

	Related Work
	Conclusion

